Tutorial class 28/3

1 Series of real numbers

Definition 1.1. We say that > ;- x; converge if > ., x; is a convergent sequence.
Proposition 1.1. (Necessary condition) Y .o | x; is convergent only if x, — 0 as n — oc.
Proof. Denote s, =Y . x;, L= ", ;. Then z,, = s, — $,_1 = L — L =0. O

Proposition 1.2. (Cauchy Criterion) Y .o x; is convergent if and only if ¥V € > 0, there
exists N € N such that for allm,n > N, 3" z; <e.

Proof. Directly from the result of convergent sequence. O

2 tests for convergence

Hence we have the following comparsion test.

Corollary 2.1. If {ax}, {bi} are two sequence of real number in which 0 < ay < by, for all
k €lmathbbN. Then Y aj converge if > by, converge.

Example 2.2. The following series are convergent.

1.5, ne=""

2. 3 ooiy vty where € > 0.

Proof. Since ze~*/2 — 0 as  — 0, we know that ze */? is bounded by some L > 0 on
[0, +00). Thus
L
ne™™ < e~ /2 —7; < Le™™? ¥YneN.
n

Right hand side is clearly summable. Hence by comparsion test, the series is convergent.

Noted that
n n n 2
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The second inequality hold when n > N(e). (say N > logy(2 + €)) By comparsion test,

oo n H :
)Y 7rre—ng7 18 convergent and hence the whole series converges. O

Theorem 2.3. (Montone convergence theorem) Suppose x,, > 0, then Y - | x, converge if

and only if the partial sum is bounded uniformly.
Example 2.4. Suppose x,, > 0 and > x, converge. Then the following series converge.

1. >zl re, where € > 0.



Proof. We have z, — 0 as n — oo. So there exists N such that for all n > N,
0<zx, <1. Thus
0<azlt <z, Vn>N.

Thus, by comparsion test or MCT, the result follows. O
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Proof. By cauchy inequality,
N N /2 , 1/2
/T 1
d s e (1) =L
n=1 n=1 n=1
The upper bound is due to the convergence of Y x,, and > 1/n% Thus the series is

convergent. O

3. Suppose > ay and Y by are two series of positive numbers such that limg_, ‘g—: =[>

0, then > ay is summable if and only if > by is so.

Proof. There exists N such that for all n > N,

!
5 bn < an <2 by

The conclusion follows from comparison test. O

Theorem 2.5. (Root Test)Suppose ay, is sequence of real number such that

lim sup |a,|'/™ = L.
n—oo

Then the series converges absolutely if L < 1, and diverge if L > 1.
Proof. If 0 < L < 1, because of the assumption, there exists N € N so that

1+L
sup |ag|V* <1==—=, ¥n> N,
k>n 2
Thus, for all n > N, |a,| < I™. But the series b, = [" is clearly convergent. So > > \ |an|
converges and hence Y7 |a,|.
If L > 1, for | = 3L, there exists N € N such that supys,, lax|'/* > 1 > 1 for all n > N.
So for each n > N, there exists a subsequence a,; so that |a,,| > ["7 — +o00. So the series

cannot be convergent. O

Example 2.6. > (5,%5)" is convergent.

Proof. |z, |V/" = 525 — 5 € [0,1). O

The existence of improper integral is similar to the convergence of series. The relationship

is illustrated below.



Theorem 2.7. Let f be positive decreasing function on [1,+00). Then the series Y oo f(k)

converges if and only if the improper integral floo f @) dt exists.

Proof. Basically due to the fact that for all £ > 2,

k

flk) < f()dt < f(k—1).

k—1
Therefore, for all n > m > 1,
/ f(t) dt < Z f(k).
k= m+1

If the integral exists, take m = 1 to see that partial sum is bounded and hence convergent
by monotone convergent theorem.

If the series is convergent, Ve > 0, there exists N € N such that for all m,n > N,

0< > flk)<e
k=m
Thus, for all x >y > N 4+ 1,
}+1 [z]+1
/ f(t)dt < / t) dt < Z f(k) <e.
[v] k=[y]
So the integral exists by cauchy criterion. O

Example 2.8.

1.5 np converges if and only if p > 1.

Proof. If p < 0, the series is clearly divergent by the convergent criterion. By integral

test, suffices to consider the function f(t) = & where p > 0. Now let us compute the
integral.
1 =r_1
/ lag=2""1
1 P I—p
So the integral exists if and only if p > 1. O

— 1
2. The series kz::z W converge when a > 1.

Proof. The improper integral fl ) dt where f(t) = exists if p > 1. O
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